

Innovative, Customer-driven, Quality focused, Adherent, Responsive, Proactive

SEWON CELLONTECH CO., LTD.

6th FL, HP Building, 83 Uisadang-daero,Yeongdeungpo-gu, Seoul, 150-724, Korea Tel +82.2.2167.9061 Fax +82.2.2167.9158 E-mail sales@swcell.com www.swcell.com

OUR VALUE YOUR SUCCESS Quality Value. Delivery Value. Price Value.

+

+

+

+

+

+

6th FL, HP Building, 83 Uisadang-daero, Yeongdeungpo-gu, Seoul,

Tel +82.2.2167.9061 Fax +82.2.2167.9158 E-mail sales@swcell.com

www.swcell.com

150-724, Korea

+ +

+

+

+

+

+

.

+

+

+

+

+ +

+

+

+

+

+

+

aad

SEWON CELLONTECH Our Value Your Success

Message From The CEO

In its long journey with customers and partners since its foundation in 1971, SEWON CELLONTECH has sought to pioneer new approaches in manufacturing. These endeavors have yielded many products that have enriched the lives of people in the world and SEWON CELLONTECH has contributed to the development of the industries through these commitments. Over the past three decades we have become a leader in executing large, complex projects on time and within budget. The world, however, always present great challenges, and the work of solving them will never be finished.

To respond accurately to the challenges arising from the circumstances, we have reorganized not only our business platform but management system also based upon optimal business strategy. The newly introduced business platform, for instance from PLA(Production Line Assessment) Matrix to PFM(Production Field Manual), helped us align with our customers to ensure that we understand their unique requirements and we also recommitted to our solid focus on quality performance and delivery through these improved and effective solutions.

In the view of technology, we have constantly strengthened to implement new welding applications in various projects. These improvements were driven by our "Welding Technology Center" which has been tirelessly engaged in researching and developing highend welding technologies. The efforts enabled us to be equipped with high-precision inner bore welding method, ultra-thickness narrow gap welding and high-speed automatic welding method in nozzle. Simultaneously, these newly adapted welding methods contribute to enhancing the company's ability to manufacture products timely and cost-effectively. Our continuing R&D innovations, therefore, became the fundamental resource in supplying products with much specialized materials such as low alloy steel and non-ferrous alloy steel, which accelerated new awards from top-class clients in oil & gas, petrochemical, and power plant industries.

By combining proven experience and newly developed technologies, we significantly expanded production line into sophisticated reactors like CCR platforming reactors, CCR reforming reactors, and FCC reactors. In addition, PDH reactors, Hydro-treating reactors, SM reactors, and HPPO (Hydrogen Peroxide to Propylene Oxide) reactors were also supplied for various customers, and favorable reputations in the market have led us to a world-class reactors supplier.

Not only in traditional oil & gas and petrochemical field, but we have made substantial advancements in Ammonia, Urea, and Power Plant industries also. Especially, successfully completing projects of IGCC Power Plant and GTL process was the turning point in expanding business border to new challengeable market. The most innovative technology field we are recently involved in is the solar energy industry. SEWON CELLONTECH is providing various polysilicon production equipment that allow our customers to lower the cost of manufacturing high-quality advanced materials, which expands foundation of product that accelerate the adoption of energy-saving technology.

We are convinced that our customers will continue to rely on us as integral to their success by delivering their most valuable projects safely, on time, within budget, and to their quality requirements We will work closely with them to find even more innovative solutions to lessen the impact of their every challenge and believe that SEWON CELLONTECH is well positioned in global market and will delivers innovations that answer global economy challenges.

With our talented employees and effective management system, we can inspire our customers around the world and focus on sustainable growth, building long-standing reputation as the go-to company.

CEO and Chairman Charg, Cheorg- Ho

Overview

Enterprise

Structure

Founded in 1971. SEWON CELLONTECH have been one of the most technologically focused plant manufacturing company in the world and major provider of various clients from all over the world.

During our history, we have acquired many innovative technologies and executed large projects for fabrication in the Oil & Gas and Energy industries the refinery complex to the energy sector successfully.

Today, Sewon cellontech is perfectly ready to support any projects from precious clients and our endeavors dedicated to the success of clients will become the hallmark of our business.

SC FAMILY

S	EWO	N CELLONTECH	SC ENGIN
Р	E	Process Equipment Air Fin Cooler Power Plant Equipment	MATERIA Basic Materi Chemical Ma
M	IE	Hydraulic Equipment	Bio material
		Hydraulic System & Unit Glass Lining Equipment	INDUSTR Paper&Pulp
R	MS	Stem Cell System Regen Graft SERAZENA	KSLV-1 Fuel H2 Process Incinerator
			ENERGY-
Á		_	HRSG Co-Gen PP CCPP WHRB

IEERING

L-PLATFORM

aterial

IAL-PLATFORM

l Ground Facility

PLATFORM

Company Snapshot

Company Name SEWON CELLONTECH Co., Ltd.

Date of Establishment 1971.01.14

Business Field

Location

1 Seoul, Korea 2 Changwon, Korea 3 Gunsan, Korea 4 Busan, Korea

Head Office

6th FL, HP Building, 83 Uisadangdaero, Yeongdeungpo-gu, Seoul, Korea

Website www.swcell.com

Progress Control System checks any delay in fabrication progress and gives the most appropriate alternative to make up for the delay to meet the previously planned schedule.

Every project is strictly calculated and planned to keep originally required schedule. The scheduling is operated by the "Progress S-Curve" in combination with the support of well-designed IT solution. The best solution, if any delays behind the planned schedule, would be suggested to narrow down the gap of changes according to "Progress IOMS Chart" which has the pool of solutions with coded serial numbers as the same as in Process Control System. Operators can find the right remedial action on changes as done in Process Control System.

Management System

The most predominant factor in executing projects is to meet quality requirements and complete any projects on time for customers. Working to provide a more vertically as well as horizontally integrated approach to executing projects, we created "SPORT(SC Project Optimization Report & Treatment) System", the state-of-the-art management solution, to care for customers' prime concerns in schedule and budget of their own projects.

SPORT System is mainly composed of two methodological procedures called "PPCS(Process Control & Progress Control System)" and applied to all projects with strict principle and rule. Every projects we were awarded from our precious customers should be executed without delay, which is the cornerstone to implement the SPORT System. In the process of handling projects, any unexpected issues may arise and result in failure of on time delivery. To eliminate the gap between a planned schedule and an actual one, we are utilizing PPCS from the beginning of projects with strong attention and it proved to be one of the ultimate solutions in managing manufacturing process throughout on-the-job simulation.

Process Control System monitors any deviations in budget and choose the optimal treatment to solve the issued deviations.

In the course of executing projects, lot of changes in customers' requirements may appear. Process Control System can be applied to these changes and correct those with "Process IOMS(Issue Oriented Management Solution) Chart" that accurately designate which treatment would be the perfect solution to the deviation. Since the solutions are categorized and coded into serial number, operators can take the designated solution and do a correct actions according to the protocol of the program.

Reciprocally interacting, Process Control System and Progress Control System play an unprecedentedly important role in managing every process in production to demonstrate a "customer-oriented" approach for completing projects more quickly. The two key resources of the SPORT System, Process Control System and Progress Control System, are inextricably linked to each other to reduce costs and increase the possibility of success in any projects.

The fundamental trait of our management system, SPORT, drives better-qualified products and well-balanced competitiveness in the industries. In combination, SPORT is the evidence of our commitment to meeting people's needs whether they are customers, suppliers, or employee.

Line of **Business**

Reactors

SEWON CELLONTECH is capable of designing in strict compliance with the client's requirements and supplied reactors in the world make us build up a strong relationship with clients and licensors. Zero-tolerance quality control and technical research of welding and heat treatment are always a strong basement for supporting clients' request.

01 CCR Platforming Reactor(UOP) 02 CCR Reforming Reactor(Axens) 03 FCC Reactor & Regenerator 04 PDH Reactor 05 Water Cooled Methanol Reactor 06 Hydro-Treating Reactor 07 SMART Reactor(UOP) 08 HPPO Reactor

Drums

SEWON CELLONTECH's heavy wall pressure vessels are in use for a wide range of pressure, temperature and fluid flow in process plants. With decades of experience, SEWON CELLONTECH has been fully committed to provide our services and products to our clients' satisfaction.

01 Molecular Sieve Adsorber 02 Separator

Towers & Columns

SEWON CELLONTECH is a reputed fabricator of several types of packed and tray columns.

01 High Pressure Elevation Degasser 02 H.P. Demethaniser

++

+

+

+

+

+

+

+

+

++

+

++

++

+

+

+

+

150-724, Korea Tel +82.2.2167.9050~65 Fax +82.2.2167.9158 E-mail sales@swcell.com

www.swcell.com

6th FL, HP Building, 83 Uisadang-daero, Yeongdeungpo-gu, Seoul,

+

+

+

+

Company Profile Since 1971

Founded in 1971, SEWON CELLONTECH have been one of the most technologically focused plant manufacturing company in the world and major provider of various clients from all over the world.

During our history, we have acquired many innovative technologies and executed large projects for fabrication in the Oil & Gas and Energy industries the refinery complex to the energy sector successfully.

Today, Sewon cellontech is perfectly ready to support any projects from precious clients and our endeavors dedicated to the success of clients will become the hallmark of our business.

01 Changwon Plant (102,128 m²) **02 Gunsan Plant** (102,482 m²)

SEWON CELLONTECH has manufacturing plant in Changwon and Gunsan.

Reactors

01 CCR Platforming Reactor (UOP)
02 CCR Reforming Reactor (Axens)
03 FCC Reactor & Regenerator
04 PDH (Propane Dehydrogenation) Reactor – Oleflex Reactor (UOP)
05 Water Cooled Methanol Reactor
06 Hydro-Treating Reactor
07 SM (Stylene Monomer) Reactor –

SMART Reactor (UOP) **08** HPPO Reactor(Hydrogen Peroxide to Propylene Oxide)

CCR Platforming Reactor (UOP)

Our rich experiences have made us to develop know-how to fabricate the reactor on-time with required quality. Its high temperature service needs very careful mechanical design. This reactor is usually very long because each section of reactors is stacked vertically. Thus tolerances including straightness are quite severe. We know well how to handle all these difficulties. And good relationship and cooperation with licensor and internal parts suppliers enable us to be better for this equipment.

01 CCR Platforming Reactor (UOP)

Plate : SA387-Forging : SA336-

Experience List						
Customer	Project	Description	Material	Weight (Ton)	Year	
GS Engineering & Construction	Lidong Aromatics	CCR Platforming Reactor #1~#4 (Moon Type)	A387-11 Cl.1	300	2005	
SK Engineering & Construction	ATC Aromatics Complex 2	CCR Platforming Reactor (Moon Type)	A387-11 Cl.1	330	2006	
GS Caltex Corporation	CCR Revamping	CCR Revamping (Moon Type)	A387-11 Cl.1	175	2007	
SK Engineering & Construction	KPPC Aromatics	CCR Platforming Reactor (Moon Type)	A387-11 Cl.2	533	2007	
Bechtel-Jacobs Joint Venture	Motiva Crude Expansion	CCR Platforming Reactor (Optimizer Type)	A387-22 Cl.2	468	2008	
Daelim Industrial Co., LTD.	Yanbu	CCR Platforming Reactor (Optimizer Type)	A387-11 Cl.1	281	2011	
SK Engineering & Construction	Jurong Aromatic	CCR Platforming Reactor (Moon Type)	A387-11 Cl.1	244	2012	
Hyundai Engineering & Construction	V-Project	CCR Platforming Reactor (Moon Type)	A387-11 Cl.1	168	2013	
UOP	Roseneft	CCR Platforming Reactor (Moon Type)	A387-11 Cl.1	167	2013	
UOP	Antipinsky Russia	CCR Platforming Reactor (Moon Type)	A387-11 Cl.1	100	2015	
Technip Malaysia	NSRP	CCR Platforming Reactor (Optimizer Type)	A387-22 Cl.2	336	2015	

Reference

1 Internal Part (Centerpipe, Catalyst Transfer Pipe) shall be separately packed, assembled at site after trial-assembly at CCR manufacturer's shop. 2 Referring scallop type, assembly scope can be managed at the shop or site.

Design Specification	
Material	Weight
11 CL.1 or SA387-22 Cl.2 -F11 CL.2, SA182-F11 CL.2	167 ~ 533 Ton

CCR Reforming Reactor (Axens)

This reactor is made of CrMo low alloy steel. Heat control is very important for welding of this material to maintain required quality. We know how to handle this material very well. There are very complicate catalyst transfer pipes installed to connect upper & lower hopper to reactor. It needs very careful 3 dimensional pipes bending to fit perfectly. Our successful supplying experiences prove our capability.

02 CCR Reforming Reactor (Axens)

Plate Forging : SA336-

Experience List							
Customer	Project	Description	Material	Weight (Ton)	Year		
GS Engineering & Construction	No.4 Aromatics	CCR Reactor	A387-11 Cl.1	51	2002		
SK Engineering & Construction	NRCX	CCR Reactor	A387-11 Cl.1	41 ~ 58	2005		
GS Engineering & Construction	Sohar Aromatic	CCR Reactor	A387-11 Cl.1	33 ~ 54	2007		
Samsung Engineering	Aromatics	CCR Reactor	A387-11 Cl.1	50 ~ 99	2011		
Technip	Rehabilitation & Adapation Project	CCR Reactor	A387-11 Cl.1	15 ~ 22	2013		

Reference

- 1 The bending tolerance of catalyst transfer piping shall be considered to connect reactor from catalyst hopper.

Reactors

06 **07**

Design Specification	
Material	Weight
: SA387-11 CL.1 -F11 CL.2, SA182-F11 CL.2	15 ~ 99 Ton

- 2 Internal Part (Centerpipe, Catalyst Transfer Pipe) shall
- be separately packed, assembled at site site after trial-assembly at CCR
- manufacturer's shop, and scallop or outside grid shall be assembled at shop.

FCC Reactor & Regenerator

FCC reactor and regenerator are key-equipments for FCC process. Due to its process requirement, many complicate internal parts and refractory lining shall be installed inside of the equipments. Working sequences are very important to maintain quality & on-time delivery. Through extensive

Reactors

03 FCC Reactor & Regenerator

Plate : SA387-11 CL.1 + 41 Forgin

Experience List					
Customer	Project	Description	Material	Weight (Ton)	Year
Daelim Industry	Petro FCC, Philippines	UOP FCC reactor [Full package]	A516-70	235(Rx) / 365(Rg)	2007
CB&I	Cartagena Refinery Expansion	UOP FCC reactor	A387-11 Cl.1 + 410 S.S / A516-70	480(Rx) / 911(Rg)	2012

Reference

Composition

• Reactor / Regenerator / Stand pipe / Orifice Chamber

Detailed Part

- Spent Catalyst Stripper Combustor
- Cyclone
- Air Distributor
- Refractory Lining Work
- Expansion Joint
- Slide Valve

BETC

• Packing the Stand pipe separately

Design Specification	
Material	Weight
0 S.S(Reactor) / SA516-70(Regenerator)	Rx : 235 ~ 480 Ton /
ng : SA182-F11 CL.2	Rg : 480 ~ 911.Ton

PDH Reactor - Oleflex Reactor (UOP)

(Propane Dehydrogenation)

Due to low price of natural gas, gas based process are now very popular. PDH process is one of them. With strong capability of manufacturing complicate reactors, we are very good at this PDH reactor also. Complicate internal parts shall be installed inside of the reactor. Precise sequence of working procedure, know-how & good cooperation with internal suppliers are also crucial to successful delivery.

Experience List						
Customer	Project	Description	Material	Weight (Ton)	Year	
Taekwang Industries	Taekwang ANP	R#1/#2/#3/#4	A240-304	100.7	1996	
Alujain Corp.	PDH Al Fasel	R-1001 / 1002 / 1003 / 1004	A240-304	68	2006	
Tobolsk Polymer LLC	PDH Tobolsk	R-11201/2/3/4	A240-304	115.6	2010	
Samsung	Carbon Black& Delayed Coker	2640-D- 016/017/018	A240-304H	205	2013	

Reference

1 Internal Part (Basket, Transfer Pipe, Cover Plate, Centerpipe, Plug Distributor, Expansion Joint) shall be separately packed, assembled at site after trial-assembly at manufacturer's shop. 2 Carbon content shall be 0.04% to 0.06% on base metal heat analysis and welding consumables.

Reactors

04 PDH (Propane Dehydrogenation)

10 **11**

Design Specification		
Material	Weight	
SA240-304H / SA182-304H / SA403-304H	68 ~ 205 Ton	

Water Cooled Methanol Reactor

Water Cooled Methanol reactor is one of the core equipments of Mega Methanol process. This reactor is very heavy tubular reactor. Careful handling of big numbers of tubes, tube to tubesheets welding is required and also precise heat control for welding is very important to overall quality. We have capability to supply good quality reactors on time, of course can meet all requirements from process, licensor, code & project specification.

Reactors

The second se

05 Water Cooled Methanol Reacto ming FC xens) Re SM

SM (Stylene Monomer) Reactor – SMART PDH (Propane Dehydrogenation)

PPO Reactor lydrogen Peroxide to ropylene Oxide) Plat Forgir

Customer Air Liquide Petro

Reference

Piping shall be designed as per ASME B31.1
Tube shall be ordered as per tolerance limits of Licenser (SA789 UNS S31500)
Catalyst shall be filled in tube inside

Design Specification	
Material	Weight
te : SA387-11 CL.2 ng : SA182-F11 CL.2	305.14 Ton

Expe	erience List			
Project	Description	Material	Weight (Ton)	Year
onas Methanol	Water Cooled Methanol Reactor	SA387-11 Cl.2	305.14	2006

Hydro-Treating Reactor

Operational condition of Hydro-treating reactors are very severe, thus high-temperature service CrMo low alloy steel shall be used as base material and SS cladding or weldoverlay is also required because of hydrogen. Very sensitive control of all working procedure, especially welding is key factor of good quality and on-time delivery. Only few capable manufactures can supply this reactor with required quality on time. We are very proud we are one of them, even better we can supply it with competitive price.

3/100/ 022						
	E>	operience List				
Customer	Project	Description	Ма	terial	Weight (Ton)	Year
Fluor Daniel	BP Toledo Clean Fuels	A-DHT Reactor	SA38 347	87-22+ ' Cald	173	2004
SK Corp.	No. 2 & 3 FCC	HDS Reactor	SA387- 347	-22 CL2 + W / O	62/33	2007
Foster Wheeler	Bukom Refinery Modification	HDS Reactor	SA387- 347	-11 CL2 + W / O	148	2009
SKEC	Jurong Aromatic Complex	DHT Reactor No. 1 & 2	SA387- 347	-11 CL2 + W / O	127 / 192	2012
SECL	Samsung Total No.2 Aromatics Complex	DHT Reactor	SA387- 347	-11 CL2 + W / O	125	2013
GSEC	The ERC Hydro-Cracker	Diesel Hydrotreating Reactor	SA387- 347	-11 CL2 + W / O	421	2014

Reference

14 15

Design Specification	
Material	Weight
SA387-CL2	148 Ton

📶 Support ring for Catalyst Bed support Grid shall be fabricated with weld built-up or

Forged ring type.
Internal Part (Equiflow Distributor Tray, Catalyst Bed Support Grid, Equiflow Mixing Tray) shall be separately packed, assembled at site after trial Ass'y at manufacturer's shop.

SM Reactor - SMART Reactor (UOP)

(Stylene Monomer)

Styrene Monomer is feed stock of polystyrene and key process of BTX chain. We are one of the most experienced suppliers of this reactor. This reactor needs careful design, work procedure, control of welding, assembling internal parts & proper quality control. Thanks to customers' satisfaction, we could have many experiences supplying this reactor.

Experience List									
Customer	Project	Description	Material	Weight (Ton)	Year				
LG Chem	EB/SM Revamping	Intermediate Stage "Smart" Dehydrogenation Reactor	SA240-304H	71	2003				
Dongbu Hiteck	SM2plant Smart Reactor	Smart Dehydrogenation Reactor	SA240-304H	71	2005				
Hitachi Plant Technologies	NS	First Stage Dehydrogenation Reactor	SA240-304H	94	2012				

Reference

manufacturer's shop. 2 Field hydrotest of reactor is not recommended.

Reactors

Design Specification					
Material	Weight				
SA240-304H	71 ~ 94 Ton				

1 All internal Parts (Displacement Cylinder, Inner Cylinder, etc) shall be assembled at

S Displacement cylinder shall be leak tested with 1.05 Kg/cm² air to check guide bar welds.

HPPO Reactor

(Hydrogen Peroxide to Propylene Oxide)

This reactor is a very heavy tubular reactor and made of solid Stainless steel. HPPO is a kind of very advanced process of downstream of petrochemical. Our know-how to manufacture tubular reactors enables us to deliver the reactors with good quality on-time. We are proud that we could supply the reactor for the first commercial plant of the customer. Due to customers' satisfaction, we could have another chance to manufacture this reactor again.

Pla

Customer Siam Styrene Monomer Co., LTD The Dow Chemical

Reference

1 Hydrogen Peroxide Cleaning, Pickling and Passivation. 2 Tube shall be ordered as per tolerance limits of SA1016M.

Design Specification	
Material	Weight
ate : SA240-321	379 ~ 389 Ton

Experience List									
Project	Description	Material	Weight (Ton)	Year					
Confidential	Tubular Reactor	SA240-321	379	2010					
Confidential	Tubular Reactor	SA240-321	389	2013					

6th FL, HP Building, 83 Uisadang-daero, Yeongdeungpo-gu, Seoul,

150-724, Korea

Tel +82.2.2167.9061 Fax +82.2.2167.9158 E-mail sales@swcell.com

www.swcell.com

+

+

+

+

++

+

+

+

+

+

++

+

+

++

++

+

+

+

+

+

+

01 Reactors 02 Drums 03 Towers & Colums 04 Shell& Tube Heater Exchangers 05 Air Fin Coolers 06 Power Plant Equipment

Company Profile Since 1971

6th FL, HP Building, 83 Uisadangdaero, Yeongdeungpo-gu, Seoul, Korea

Website www.swcell.com

and major provider of various clients from all over the world. During our history, we have acquired many innovative technologies and executed large projects for fabrication in the Oil & Gas and Energy industries the refinery complex to the energy sector successfully.

Today, Sewon cellontech is perfectly ready to support any projects from precious clients and our endeavors dedicated to the success of clients will become the hallmark of our business.

Founded in 1971, SEWON CELLONTECH have been one of the most

technologically focused plant manufacturing company in the world

MATERIAL-PLATFORM Basic Material Chemical Material

INDUSTRIAL-PLATFORM

KSLV-1 Fuel Ground Facility

ENERGY-PLATFORM

01 NO.1 BUSINESS CAMP/Changwon Plant (102,128 m²) 02 NO.2 BUSINESS CAMP/Gunsan Plant (102,482 m^{*})

SEWON CELLONTECH has manufacturing plant in Changwon and Gunsan.

Adsorber (Horizontal Type)

Drums

SEWON CELLONTECH is building and supplying a variety of pressure vessels necessary for the oil, gas and petrochemical industries by performing all manufacturing stages from design and manufacture to inspection and test, and shipping in compliance with the codes of different countries including ASME, PD5500, JIS and PED, and the provisions of ISO 9001 Quality Management System and ISO 14001 Environment Management System.

Project MIRFAI, U.A.E. Dimension 5,000ID x 35T x 25,000L, 133 Ton Material SA516-70

Overview of Shell Inside Part

Drums

In addition, we have sufficient experience in using various materials, welding techniques and testing to meet diverse requirements of each process.

Adsorber (Vertical Type)

ProjectNEW FCC, Ulsan, Korea.Dimension1,800ID x 38T x 12,000L Material SA516-70

Installation of Internals

Experience List										
Customer	Project	Description	Material	Weight (Ton)						
Linde AG	Cantarell 5	Molecular sieve adsorber	SA516-70	123						
Linde AG	PSA	PSA Adsorber	SA516-70	32						
Air Liquide	EGTL (Escravos Gas Liquids)	PSA Adsorber	SA516-70+N	20						
Linde AG	LBPP(Corpus Christi)	PSA Adsorber	SA516-70	13						
Linde AG	Mirfa 1	Molecular sieve Adsorber	SA516-70	35						
Linde AG	Hwasung 2	Molecular sieve Adsorber	SA516-70	29						
Air Liquide	Al Heracles Rotterdam	CO Adsorber	SA516-70	13						
Linde AG	#2 HOU	PSA Adsorber	SA516-70	29						
Air Liquide	Al Nova	CO Adsorber	SA516-70	18						
Linde AG	Cuddalore	PSA Adsorber	SA516-70	14						
Linde AG	Singapore 3	PSA Adsorber	SA516-70	49						

Adsorber for Vertical Type Bottom Head Welding

Fabrication

Head Buttering

Hemi Head Fabrication

Drums

Charge Gas Compressor 2nd Stage Suction Drum

ProjectSHELL, SingaporeDimension2,500ID x 50T x 12,000L, 90TonMaterialSA516-70

BFW Preheater

Project AOFP, Algeria Dimension 1,800ID x 150T x 800L, 80Ton Material SA516-70

Ammonia Separator

Third Stage Separator

Project QAFCO-5, Qatar Dimension 2,700ID x 194T x 8,600L, 105T Material SA516-70

ProjectCilacap RFCC ProjectDimension9,040ID x 20T x 15,030L, 65TonMaterialSA516-70

6th FL, HP Building, 83 Uisadang-daero,

Yeongdeungpo-gu, Seoul, 150-724, Korea

Tel +82.2.2167.9061 Fax +82.2.2167.9158 E-mail sales@swcell.com

www.swcell.com

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

TOWERS & COLUMNS Our Value Your Success

01 Reactors 02 Drums 03 Towers & Colums 04 Shell& Tube Heater Exchangers 05 Air Fin Coolers 06 Power Plant Equipment

Company Profile Since 1971

Overview Company Name SEWON CELLONTECH Co., Ltd. Date of Establishment 1971.01.14 Business Field Regene Medical Svstem Location 1 Seoul, Korea 2 Changwon, Korea 🕄 Gunsan, Korea 4 Busan, Korea Head Office 6th FL, HP Building, 83 Uisadangdaero, Yeongdeungpo-gu,

Founded in 1971, SEWON CELLONTECH have been one of the most technologically focused plant manufacturing company in the world and major provider of various clients from all over the world.

During our history, we have acquired many innovative technologies and executed large projects for fabrication in the Oil & Gas and Energy industries the refinery complex to the energy sector successfully.

Today, Sewon cellontech is perfectly ready to support any projects from precious clients and our endeavors dedicated to the success of clients will become the hallmark of our business.

Towers & Columns

SEWON CELLONTECH has numerous experience in building different types of columns such as packed columns and tray columns used in the oil, gas and petrochemical industries. Having the necessary facilities to build largesize columns.

Large Tower

Material SA516-70

01 NO.1 BUSINESS CAMP/Changwon Plant (102,128 m²) 02 NO.2 BUSINESS CAMP/Gunsan Plant (102,482 m^{*})

Seoul, Korea

Website www.swcell.com

SEWON CELLONTECH has manufacturing plant in Changwon and Gunsan.

02 03

Project TAF, Russia Dimension 6,430ID x 35+3T x 70,750L, 376Ton Material SA516-70+SA316L

Towers & Columns

Deethaniser

ProjectQGPC NGL-4, QatarDimension5,800ID x 99T x 80,000L, 440TonMaterialSA240-316L

H.P. Demethaniser

ProjectAlgeria Oman Fertilizer, AlgeriaDimension4,200ID x 99T x 51,000L, 409TonMaterialSA240-316

Tray Installation

Algeria Oman Fertilizer Project 65mm wall thickness

Fabrication of Each Block

PWHT

Final Docking

Shipping Arrangement SEWON CELLONTECH is a reputed fabricator of several types of packed and tray columns.

Towers & Columns

Urea Plant

Project Eagrium-NH3, Egypt Dimension 3,800ID x 79T x 58,000L, 177Ton Material SA516Gr.70

LP Refining Column

Project EBM, Brunei Dimension 5,500ID x 32T x 60,000L, 390Ton Material SA516Gr.60

Customer

Tecnimont

MTP HPPO Manufacturi Company

Mitsubishi Heavy Industri Co., Ltd.

Valero Port Arthur Refine

Diamond Shamrock Refin Company

Valero Refining Compar

Saipem S.A.

PTT Aramatics & Refinir Public Company Limite

Kellogg JV Gorgon

Kawasaki Plant Systems

Chiyoda Corporation

Chiyoda Corporation

Adnoco and Conoco Phillip

Dow Chemical Thailand Lin

Mitsubishi Heavy Industri Co., Ltd.

JGC Corporation

Kellogg Brown & Root

LP Flash Drum / CO2 Stripper / HP Flash Drum

	Experience List			
	Project	Qť'y	Material	Code
	Borouge 2	27	A516-70N	ASME / VIII "U"Stamp
ing	HPPO II	4	A240-304L	ASME / VIII "U"Stamp
ries	AOFP	4	A516-70+ 304L SS	ASME / VIII
ery	Benzene Reduction	1	A516-70	ASME / VIII "U"Stamp
ning	Benzene Reduction	1	A516-70	ASME / VIII "U"Stamp
ny	Benzene Reduction	1	A516-70	ASME / VIII "U"Stamp
	LPG Hassi Messaoud "ZCINA"	9	A516-70	ASME / VIII
ng ed	PTTAR Clean Fuel	5	A516-60N	ASME / VIII "U"Stamp
	Gorgon LNG	14	A516-70+3 04L SS	ASME / VIII "U"Stamp
Ltd.	Turkmenistan Fertilizer	2	A387-11-1+ SS316L	ASME / VIII
	PNG LNG	2	A240-304 / 304L DUAL	ASME / VIII
	PNG LNG	2	A240-304 / 304L DUAL	ASME / VIII
ps JV	Shah Gas Development	3	A240-316L	ASME / VIII "U"Stamp
mited	PG	14	SA516-70	ASME / VIII DIV.1
ries	TAF	4	A516-70+ SA240-304L	ASME / VIII DIV.1 2010ED
	Barzan Onshore	6	A240-304L	ASME / VIII DIV.1
t	Ras Tanura Integrated (RTIP)	4	UNS S31803 / Alloy UNS N10276	ASME / VIII DIV.1

+

+

+

+

6th FL, HP Building, 83 Uisadang-daero, Yeongdeungpo-gu, Seoul, 150-724, Korea

Tel +82.2.2167.9061 Fax +82.2.2167.9158 E-mail sales@swcell.com

www.swcell.com

++

++

+

++

+

+

+

+

+

+

++

+

+

+

+

+

+

SHELL & TUBE **HEAT EXCHANGERS** Our Value Your Success

Company Profile Since 1971

Founded in 1971, SEWON CELLONTECH have been one of the most technologically focused plant manufacturing company in the world and major provider of various clients from all over the world.

During our history, we have acquired many innovative technologies and executed large projects for fabrication in the Oil & Gas and Energy industries the refinery complex to the energy sector successfully.

Today, Sewon cellontech is perfectly ready to support any projects from precious clients and our endeavors dedicated to the success of clients will become the hallmark of our business.

SEWON CELLONTECH has manufacturing plant in Changwon and Gunsan.

Design and Engineering

BTA Drilling M / C

CNC BTA drilling M / C Max. Dia. 3,600mm / Thi'k 500mm

Vertical Lathe

SEWON CELLONTECH is capable to design equipment according to various & specific customer requirements and international codes and standards.

Work Diameter 3,200 ~ 6,000 mm Max.

Work Height 1,100 ~ 2,000 mm

-																			1
											-								
		6	<u>6</u>																
			R .																
	_	e	02																
é	NO2	~	STD. N.P	_															-
1	Y		ASME N.P	SV4															Г
	18	1	°-A	4				_		1									
		<u> </u>								1									
	/	the country of the second											~		•)				
s	≫			HINGE					//						\neg				
Ϊ	~								/		کمر				1				-
		12		TOP											1				
		6/		6	00					-				/	1				
		#	91	r (24) (8 X 28			N					Internal P	ressure Of	Shell Side				
	. 16	<u></u>	HY XXXXXXXX		~ ~										1	_			
5		γ	K KAN	-0					()		†				- 1				
2	8	/	► 3407-I∥	//											1				-
×	×~,	JE.	ES 99 / //#	BMV	<u>.</u>														E
	1			× 5	80														
	- /	\sim		Ē	10 830											M			
	_/	1	on <i>ha</i>	00-	_														
Ć	NOT N	-	- (N05 N12	SV1					F							SUL	-	
V	Ÿ	<u>607</u>	<u>100</u>	y or	<u> </u>					Perforated	t Pressure d Tubesber	or							
P		V.	ν <u>ψ</u>	J						(Shell Side	2)						~		
			TOP	-												Y			
N	JOZZ	LE 0	RIENTATION														SCL	_5	
		(TOP	VIEW)																
		(SCALE +	= 1 : 25)																
			11.25																D
			The																
			o / '/																
		-+-	++/																
	Ζ														ATION				
×	<u> </u>		1 A A							CHE L		1	WATERIAL 3	SPECIFI	ATION				
			1.38							CHANNEL I	CONF	SA240-	304	SIUD BULIS	NNU NUIS	-			
			1 1							SKIRT (UPP	ER/LOWER)	\$4240-	304/SA283-C	-57	TIONARY	-			
										SHELL FLANG	ε	-	· ·	-04	INNEL COVER	-			
		/	! +							CHANNEL FLA	3W	-		-FL0	ATING	-			
		/	l <i>i</i>							TUBE SHEET		SA240-	304	-94	LL SIDE NOZZ	SA193-	-B7/SA19	4-2H	
×	1		i X							FLOWING HE	AD CUNER	-		-ite	E SIDE MUZZ.	24182-	-8//SA194	9-2H	
	$\mathbf{\lambda}$		×							BACKING DEV	NE I	-		-58	LL OTVER	-		-	
_	1	·+-	L+	[[DESIGN &	: TEST	DAT	A		TUBES		SA213-	-TP304	-SH	u	-		_	С
5			80	QTY TO BE	ANUFACTURED		1 (ONE)		BAFFLES or 1	SUPPORT	SA240-	304	-CH	INNEL.	-			
				CODE		ASME SEC. TEM	A CLASS	2007 ED.+ "R" 8TH E	2009 ADD. D.	NPINCEMENT	PUATE	-	-	-08	WHEL ODVER	-			
		-	0.00151151011	CODE STAMP			YE	S		SHELL NUCLU	-0.00C	SA312- SA182	-12304	-10	AING	- SEE #1)		
7	IOR	BOLI	ORIENTATION	LOCAL REGUL	ATION	<u> </u>			_	CHANNEL NO	ZZLE - NECK	SA312-	-TP304	-7.6	E SIDE WOZZ.	SEE 1	<u>;</u>	_	
		(ounde =		TYPE		V-N	EN	V-N	EN .		-FLANGE	SA182-	-F304	BASE BLOC	<	SA283-	-c	_	
				SURFACE AREA/S	HELL (m²)	131	.2	405	5.2	DPANSION J	CINT	SA240-	304	ANCHOR B	N	SA307-	B/SA563	-4	
						SHELL SOE	TUBE SIDE	SHELL SIDE	TUBE SIDE	1) SPIRAL	. WOUND :	+ H008	P : 304 S.S R : GRAPHITE		NNER RING	: 304 1	1.5 5.5		
				FLUID CIRCUL	ATED	FA1		******	1100555										H
				NO OF PAGE	(kg/m ³)		-			X						_		\vdash	
				PRESSURE	DESIGN MEA		-		-	2011	REV.: N01	E 10 &	ETC.		THTM			-	
				(kg/cm ² g)	OPERATING	-	-	-	-	♦ 2011	REV.: BAS	E RING	O.D REV.		THIN	5.16.11	3.16.11	3.16.11	
				TEMPERATURE	DESIGN (NT D)	-	-	-	-	2011	REV.: NOG	ZLE OR	ENT. & ETC.		Y.M.KIM	3.HONG	1.13.11	HXXXM 1.13.'11	
	- 1	-	VENT PIPE	(0)	OPERATING W		-	-	-	11/05	REV.: NO	ZLE OR	ENT. & ETC.		G.C.KIN	S.HONG	JYKM 11.24.10	11.24.10	B
1	-	-	SLEEVE OPENING	TEST PRESS. (kg/cm ² p)	PNELIMATIC		-			8/25 2014	FOR APPR	OWL			B.C.CHIN	SHONG	JYXM 910 01	9.10.10	
	-	-	ACCESS OPENING	P.W.H.T	I REDMANG		-		-	REV. DATE	DES	CRIPTION	s for revision		DRIVIN	CHK'D	REVD	APP'D	
4	1165 SEE	-	MANHOLE (W/B.F & DAVIT)	RADIOGRAPHY	(S/H)	-	-	-	-	PROJECT				-				_	
	SEE.	-	HIGHT POINT VENT (W/R.F)	WELDER'S QU	ALIFICATION	-	-	-	-										
	1050	-	DRAIN (W/B.F)	JOINT	SHELL	-	-	-	-	CLIENT									
	1065	-	GAS SAMPLE	CORD ALLOS	HEAD	-	-	-	-	1				-					
6	1100	t8x#340	FORMALIN OUTLET	N.D.N.T	. (NN) (00)		-	-	-	ENGTO									H
8	1100	18x#340	FORMALIN INLET	INSULATION	(NM)	-	-	-	-					_					
26	1065		CLEARING (W/B.F)	FIRE PROOFIN	IG (NM)		-												
	1065	-	DRAIN (W/B.F)	PAINTING SPE	CIFICATION			-		TITLE							ISSUE D	ATE	
1	SEL	18x#680	RUPTURE DISC	TOLERANCE	0.000	-		_	_	1		FL M	ethanol pre	-VAPORIZ	ER/VAPO	RIZER	1		
Ĩ	1200	t15#960	PROCESS GAS OUTLET	HEND VELOCE	ASCE 7	-05 Wind	Speed-	162km/hr	_	1			GENERA	ASSE	MBLY		1		
4	1200	t15x#960	PROCESS GAS INLET	SERVICE 2001	Exposur UBC 1997.	ve C, impo Zone 2a	rtance fa Importance	otor= 1.1 factor= 1	2	1			JENERA	- 1335			1		A
05	1000	CONFIRM	RELINVOL INLET	SETSMIL ZONE	Co= 0.22	0/= 0.32	force fa	ctor R= 2.	.9	L .	a	SE	NON CO		ECH (0 1	TD	-	
	SEE	-	PROCESS GAS INLET	1	ERECTION	<u> </u>	-	-	-	(0	321	CE CE	NGTON, ¥		L	10.		
ж	PROJ	tx#ORD		WEIGHT	EMPTY					PROJECTION _	- 140	MOL	REQ. NO.		SEWON JOE	NO.		WORKS	
1	-			1 (110)								Anut						1	L
12	ZLE	REINF.PND	SERVICE & REMARKS	(KG)	OPERATING			-		¢	PR0	JECTION	-						
2	ZLE	REINF.PHD	SERVICE & REMARKS	(KG)	OPERATING TEST (SHOP)			-		SCALE		JECTION	P.0 N0.		SEWON DW			REV.	
S	zle CHE	REINF.PAD DULE	SERVICE & REMARKS	(KG)	OPERATING TEST (SHOP) BUNDLE		_	-		scale	SEE DWG.	JECTION	P.O NO		SEWON DW	- NO.		REV.	

Shell & Tube Heat Exchangers

SEWON CELLONTECH has been pursed to provide a wide spectrum of metallurgies ranging from carbon steel to stainless steel including nonferrous & duplex for specific applications.

Catalyst Cooler

ProjectCilacap RFCC ProjectDimension2,540ID x 36T x 9,220L Material SA516-70

Fabrication of Shell & Tube Heat Exchanger

Project Ras Tanura Refinery, Saudi Arabia

Tube to Tubesheet Welding

NDE & Bolt tensioning with UT check

Project Confidential

Tubesheet Overlay

Manual Welding

Orbital Welding Head (8 sets)

Inner Bore Welding(IBW)

TOFD on circum. weld joint

Bolt tensioning with tensioner

UT check before / after tensioning with tensioner

Shell & Tube Heat Exchangers

Hot Combined Feed Exchanger

Project PDH ALFASEL, Saudi Arabia Dimension 2,500ID x 25,200L, 133Ton

D-type & High Pressure Equipment

Heavy Weight Equipment

Project Dimension 5,900ID x 19,800L, 375Ton Equipment Sulphur Condenser

Experience List													
UOP Catalyst Cooler													
Customer	Project	Qt'y	Description	Code	Year								
UOP & Sohar Refinery Co.	SOHAR Refinery	3	Outer tube Inner tube	ASME / VIII Div.1	2003								
UOP & Valero Energy Corp.	FCCU Modifications	2	Outer tube Inner tube	ASME / VIII Div.1	2009								
GS E&C & PT. Pertamina	CILACAP RFCC	2	Outer tube Inner tube	ASME / VIII Div.1	2013								
UOP & Valero Energy Corp.	FCCU Modifications	1	Outer tube Inner tube	ASME / VIII Div.1	2013								
	HOT Combined	Feed E	xchanger										
Customer	Project	Qt'y	Description	Code	Year								
Lurgi & Natpet	PDH Alfasel	2	SA240-304	ASME / VIII Div.1	2006								
CTCI & HMC Polymer	CTCI & HMC Polymer PDH		SA240-304 / 304H	ASME / VIII Div.1	2008								
Hitachi & NSStyrene Monomer	NS	2	SA240-304H	ASME / VIII Div.1	2012								

Project Shah Gas Develop.(SGD) & U.A.E Dimension 6,100ID x 30,100L, 440Ton Equipment CLAUS Package of Reaction Furnace + WHB + Steam Drum

Shah Gas Develop.(SGD) & U.A.E

6th FL, HP Building, 83 Uisadang-daero, Yeongdeungpo-gu, Seoul, 150-724, Korea

Tel +82.2.2167.9061 Fax +82.2.2167.9158 E-mail sales@swcell.com

www.swcell.com

+ +

+ +

+ +

+

+

+

+

+

+

+

+

+

+

+ +

+ +

+

+

+

+

+

AIR FIN COOLERS Our Value Your Success

01 Reactors 02 Drums 03 Towers & Colums 04 Shell&Tube Heater Exchangers 05 Air Fin Coolers 06 Power Plant Equipment

Overview

Company Profile Since 1971

Head Office 6th FL, HP Building, 83 Uisadangdaero, Yeongdeungpo-gu, Seoul, Korea

Website www.swcell.com

01 NO.1 BUSINESS CAMP/Changwon Plant (102,128 m²) 02 NO.2 BUSINESS CAMP/Gunsan Plant (102,482 m^{*})

Founded in 1971, SEWON CELLONTECH have been one of the most technologically focused plant manufacturing company in the world and major provider of various clients from all over the world.

> During our history, we have acquired many innovative technologies and executed large projects for fabrication in the Oil & Gas and Energy industries the refinery complex to the energy sector successfully.

> Today, Sewon cellontech is perfectly ready to support any projects from precious clients and our endeavors dedicated to the success of clients will become the hallmark of our business.

SEWON CELLONTECH has manufacturing plant in Changwon and Gunsan.

Mechanical Assembly of Induced type Air Fin Cooler

01 Supplied to EXXON in Nigeria

(ExxonMobil Project, 2004)

(ESCRAVOS Project, 2007)

02 Supplied to CHEVRON in Nigeria

Air Fin Coolers

An Air Fin Cooler is a system that cools down fluids running through a finned tube by forcibly circulating air. Unlike shell and tube type heat exchangers that cool down fluids by using coolants such as water, air fin coolers are environmentally friendly products that do not require additional supply of water. SEWON CELLONTECH designs and manufactures finned tubes, tube bundles, header boxes and assembling in a package.

Air Fin Coolers

Fining Types		-						
	EXTRUDED	G(EMBEDDED)	L(WRA	P-ON)	KNURLED	L	DOUBLE LL
Macimum Working temperature	300℃/750°F	2	400℃/750°F	120°C/250°F		250°C/480°F		120℃/250°F
Atmospheric corrosion resistance	EXCELLENT		POOR	ACCEPTABLE		MEDIUM		MEDIUM
Mechanical resistance	EXCELLENT	А	ACCEPTABLE		OR	ACCEPTABL	E	POOR
Headers	The plug header is th most commonly used up to 250 bar working pressure.	ne plug header is the host commonly used to to 250 bar working ressure.		e header ds with ctors vhen a nanical cessary.	The pipe used for pressure when no is necess	header is working e over 200 bars inner access sary.	Th he am coi ad we sui ap	e welded bonnet ader is used for amonia condensers d aircooled steam ndensers. The vantage is the full Ided construction, itable for vacuum plications.
							(

01, 02 Supplied to SHELL in Sakhalin (SAKHALIN LNG II Project, 2005)

03 Supplied to TOTAL in Congo (MOHO BILONDO Project, 2006)

Air Fin Coolers

Knock Down Packing

Experience List		
Project / Site	Material	Bays / Bundlers
Ethane Seperation Plant / Thailand	A179, A213TP304L	77Bays / 153Bundles
Aramco Ras Tanura Refinery DHT / Saudi Arabia	A179	23Bays / 40Bundles
Esso Sriracha Clean Fuels / Thailand (Exxon Mobil)	A179	11Bays / 24Bundles
MANIFA Core Hydrocarbon Facilities / Saudi Arabia (ARAMCO)	A179	59Bays / 118Bundles
Gas Desulfurization Plant / Turkmenistan (Turkmengas)	A179, A213TP316L	47Bays / 94Bundles
Jubail Export Refinery #2B / Saudi Arabia (ARAMCO)	A179, A213TP316L	72Bays / 101Bundles
Jubail Export Refinery #4 / Saudi Arabia (ARAMCO)	A179	46Bays / 89Bundles
South Yoloten Gas Field DevelopmentTurkmenistan (Turkmengas)	A179, SA213TP316L, Alloy825, Duplex	74Bays / 135Bundles
New AGRP / Kuwait (KNPC/SHELL)	Alloy825, Duplex	31Bays / 55Bundles
Shah Gas Development / U.A.E (GASCO)	Alloy625, A179, S904L, S316L, Alloy625	108Bays / 198bundles
Group III Base Oil / UAE (Tarkeer)	A179, A213T11	29Bays / 32Bundles
Algeria Refinery / Algeria (Sonatrach)	A179, A213TP304L	57Bays / 103Bundles
SADARA Isocynates Plant / Saudi Arabia(DOW & Saudi ARAMCO)	A179, A789S31803	28Bays / 46Bundles
RABIGH II CP1 / Saudi Arabia (SUMITOMO & ARAMCO)	S32750, A179	6 Bays / 9 Bundles
SADARA / Saudi Arabia (DOW & Saudi ARAMCO)	SA179, SA213TP316L, SA789S31803	23 Bays / 29 Bundles

Customer

Samsung

Engineering Samsung

Engineering Foster Wheeler UK

Saipem Hyundai Engineering Daelim Industrial Samsung Engineering & Chiyoda

Petrofac

Tecnimont

Saipem

Hyundai Engineering

Technip Daelim Industrial

Co.,Ltd. Daelim Industrial

Co.,Ltd.

Seneral Packing & Transportation

+

+

+

+

+

+

6th FL, HP Building, 83 Uisadang-daero, Yeongdeungpo-gu, Seoul, 150-724, Korea

Tel +82.2.2167.9061 Fax +82.2.2167.9158 E-mail sales@swcell.com

www.swcell.com

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

POWER PLANT EQUIPMENT Our Value Your Success

Overview

Company Profile Since 1971

Location 1 Seoul, Korea 2 Changwon, Korea 🕄 Gunsan, Korea 4 Busan, Korea

Head Office 6th FL, HP Building, 83 Uisadangdaero, Yeongdeungpo-gu, Seoul, Korea

Website www.swcell.com

01 NO.1 BUSINESS CAMP/Changwon Plant (102,128 m²) 02 NO.2 BUSINESS CAMP/Gunsan Plant (102,482 m^{*})

Founded in 1971, SEWON CELLONTECH have been one of the most technologically focused plant manufacturing company in the world and major provider of various clients from all over the world.

> During our history, we have acquired many innovative technologies and executed large projects for fabrication in the Oil & Gas and Energy industries the refinery complex to the energy sector successfully.

> Today, Sewon cellontech is perfectly ready to support any projects from precious clients and our endeavors dedicated to the success of clients will become the hallmark of our business.

SEWON CELLONTECH has manufacturing plant in Changwon and Gunsan.

HP Feed Water Heater

HP & LP Feed Water Heater

Power Plant Equipment

Hvur	ndai Gr	een Power Stee	I Thermal Power Plant Unit #	5.6
Description	Qt'y	Material [Tube]	Size	Weight per Unit (Ton / total)
#1 LP FEED WATER HEATER	4	SA688TP304L	0.D 19.05 X 0.889 T X 23,484 L X 1,228 Q'TY I.D 970 X 13,250 L	56.8
#2 LP FEED WATER HEATER	4	SA688TP304L	0.D19.05 X 0.889 T X 19,584 L X 1,032 Q'TY I.D 820 X 11,150 L	37.2
#3 LP FEED WATER HEATER	4	SA688TP304L	0.D19.05 X 0.889 T X 17,560 L X 932 Q'TY I.D 740 X 9,750 L	27.6
#5 HP FEED WATER HEATER	4	SA213TP304N	0.D15.88 X 1.47 T X 14,746 L X 1,464 Q'TY I.D 742 X 8,800 L	43.4
#6 HP FEED WATER HEATER	4	SA213TP304N	0.D15.88 X 1.47 T X 16,521 L X 1,600 Q'TY I.D 759 X 9,200 L	52

HP Feedwater Heater for Pyeongtaek CFPP 450MW, Korea

We design and manufactures BOP equipment for Coal power, CCPP, Solar, IGCC, even for Nuclear power generation system. Our best-pursued goal is to obtain client's satisfaction with high quality equipment.

Power Plant Equipment

Gasifier & Economizer

 Project
 POSCO SNG, Korea

 Dimension
 4,100ID x 37,795L, 450Ton

 Material
 SA516-70, SA516-70+304L

POSCO SNG Project								
Description	Qť y	Material	Size	Weight per Unit(Ton)				
Gasifier Reactor	3	SA516-70N, SA516-70N + 304L	4,100ID X 37,800L	450				
Post Reactor Residence Vessel	3	SA516-70N	3,200ID X 41,100L	260				
180°C Transition Piece	3	SA516-70N	2,100ID X 12,030L	60				
Transition Piece	3	3 SA516-70N 12,000ID X 45,120L		150				
	Taean IGCC Power Plant Project							
Description	Qť y	Material	Size	Weight per Unit(Ton)				
Gasifier	1	SA387.11.CL2	5,900ID X 33,105L	502.40				
Transfer Duct	1	SA387.11.CL2	3,250ID X 11,352L	73.20				
GRC	1	SA387.11.CL2	3,600ID X 12,435L	195.80				
Syngas Cooler	1	SA387.11.CL2	3,600ID X 68,200L	612.64				
Economizer	1	SA387.11.CL2	1,560ID X 1,500L	60.65				

We are the domestic unique manufacturer supplied huge Gasification Vessel. Gisifier is the most importand unit for gasifiation project. The demand of gasification plant is expected to be dramatically increased.

SEWON CELLONTECH has a collaboration relation with HOLTEC INTERNATIONAL for Surface Condenser & Feed water Heater. SEWON CELLONTECH can manufacture Surface Condenser under the partnership with HOLTEC INTERNATIONAL HOLTEC provide the world-best design for Surface Condenser & Feed water Heater based on their World-Wide Experience and knowledge. SEWON CELLONTECH manufacture the Surface Condenser as a sub-manufacturer of HOLTEC INTERNATIONAL The reliable partnership between HOLTEC & SEWON CELLONTECH will lead us to World-Wide Market.

HOLTEC INTERNATIONAL,

headquartered in Jupiter, FL(USA), with its Corporate Technology Center in Marlton, NJ(USA), is the global turnkey supplier of equipment and systems for the Nuclear, Renewable(solar, geothermal and biomass) and Fossil Power Generation sectors of the energy industry. The company is a leading provider of power generation technologies worldwide, having supplied custom engineered capital equipment and systems worth billions of dollars to power plants in Asia, Europe, North America, South America, Australia, and Africa.

Power Plant Equipment

We manufacture various shell and tube heat exchangers for solar power project. Also we do design and manufacture Dearator & Feed Water Tank of all type of Power Plant.

Steam Drum for Solar Power

Mohave Solar Power Plant Equipment							
Description Qt'y		Material	Size	Weight per Unit(Ton			
Steam Drum	4	SA302B	2,032ID X 14,186L	220.20			
Evaporator	8	SA302B	1,840ID X 13,174L	249.12			
Superheater	4	SA516-70	1,474ID X 9,785L	200.40			
Preheater	4	SA516-70	1,560ID X 11,972L	217.60			
Reheater 1	4	SA516-70	1,524ID X 7,600L	104.00			
Reheater 2	4	SA516-70	1,770ID X 10,806L	176.60			

Dearator & Feed Water Tank

lt'y	Material	Size	Weight per Unit(Ton)		
2	SA516-70	2,286ID X 3,580L	7.60		
2	SA516-70	3,500ID X 8,000L	21.55		

FABRICATION

Since 1971, we have supplied over 10,000 sets of process equipment to around 40 countries worldwide with quality and on-time delivery.

PLANT TECHNOLOGY INSTITUTE

The Plant Technology Institute is pioneering R & D in plant equipment with its qualified technology. Its accumulated performances in welding technology, fabrication technology and design technology have been the key to innovative challenges in this field.

GLOBAL SUPPLIER

daero,Yeongdeungpo-gu, Seoul, 150-724, Korea Tel : +82.2.2167.9090 / Fax : +82.2.2167.9160

SC PLAN CO., LTD

6th floor, HP Building, 83 Uisadang-daero, Yeongdeungpo-gu, Seoul, 150-724, Korea Tel: +82.2.2167.9035 / Fax: +82.2.2167.9360

QUALITY MANAGEMENT SYSTEM

Quality Assurance

We are appling the latest cersion for inspection and has Quality Control System, Quality Assurance Manual and F

QMS Certificate

- 01 U (Pressure Vessel) 02 U2 (Pressure Vessel
- Alternative Rules)
- 03 S (Power Boiler) 04 PP (Pressure Piping)
- 05 R (Repair) of National Board
- 06 NB (National Board)
- 07 KEPIC (MN-430) 08 KEPIC (SN-431)
- 09 ML
- 10 CWB 11 ISO 9001
- 12 ISO 14001
- 13 OHSAS 18001 14 EN ISO 3834-2
- 15 Stamicarbon
- 16 17 18 19

We intend to make a great leap forward to becoming an advanced engineering enterprise armed with the technical power, best design and analysis that is one-step further upgraded.

ENGINEERIN DESIGN ANALYS

Our aim is to provide ye the most sound, cost effective

		\mathbf{k}								
					\searrow		\geq			
		\mathbf{i}								
		_								
		\leq								
		\leq		\mathbf{k}						
2	\times	\leq		\times						
İC	n	fo	r insi	pectior	n and	has	devel	oped	а	
,	Δc	51	, Iranc	e Mar	ual a	and P		lures		
/	As	550	liand	.c Mai	iuato		IUCEU	iui es,		
,	~_		£1.004							
	Je	ru	ncat	eorP	aten	τ				
1	6	We	elding	Method	I for S	hell				
	17	an	dlub	e 						
	17	Ар	parat	Nordo	ircle-					
1	18	Rc.	actor	Heipa G	to Shi Sackot	ell t for				
	10	Se	aling	Sniral	ashei	. 101				
		an	d Mar	nufactur	ina M	ethod				
		of	The R	eactor						
1	9	An	anne	aling fu	rnace	and				
		an	nealir	ng syster	m the	reof				
	01		02	03	04	05				
	08	5	07	08	09	10				
	11		12	13	14	15				
			47	10	4.0					
	16	>	17	18	19					
0										
1		N			Dk					
		Ń	~		≤ 1					
1										
		Ċ			ΔK	$\$				
		×	\mathbb{A}^{1}	1 x P		٦S.				
		K								
>										
>			AÍ		X					
	\square	×		\triangleleft	\leq					
			• .							
9	In	٦	is to	o pro	ovid	e yc	ou w	/ith		
1	n,	Ч	<u> </u>	st off	ect	ive	dec	ian		
4	11	ч,	0:		CCL		uco	gii		
	and lar	A days of	A-+4			1007		-		
10		1				VESSEL DESI	an DATA Me			
		5		7 E 1 2 E	Carlo See	2000 (1.5.4.5.9.5.5.4.	Personal Section			
1		1		LI I I I	A THREE A PLAN	Cash or in La				
		ť		((() 3) 3	A 1977			9		
~	-	_		1		100	H -			
						TAXA MAL		100 C		